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Abstract Higher order finite element method requires validimulations. When applying higher order finite elements to
curved meshes in 3D domains to achieve the solution actlree-dimensional curved domains, the elements must be prop-
racy. When applying adaptive higher order finite elementsémly curved to maintain the rate of convergence [2]. The
large-scale simulations, complexities that arise include maemmon approach to construct such curved meshes is to
ing the curved mesh adaptation along with the critical depply a straight-sided mesh generation procedure [3,4] and
mains to achieve computational efficiency. This paper prestats curve the mesh edges and faces on the curved domain
a procedure which combinesBier mesh curving and sizeboundaries to proper orders. This approach is able to take ad-
driven mesh adaptation technologies to address those requastage of the conventional unstructured mesh generators to
ments. Curved local mesh modification operations are afeal with the complexity of model geometry. However, the
plied to eliminate invalid curved elements and mesh sizesulting meshes often become invalid because curving the
field is properly controlled to generate valid curved meshesaight-sided mesh entities to model boundaries can lead to
which have been successfully used by Standford Linear Amegative determinant of Jacobian in the closures of curved
celerator (SLAC) to simulate the short-range wakefields élements. Effective and efficient correction of those invalid
particle accelerators. The analysis results for a 8-cavity cstements is critical in curvilinear mesh construction and for
omodule wakefield demonstrate that valid curvilinear mestligssusage with higher order finite elements.
not only make the time domain simulations more reliable but Stanford Linear Accelerator Center (SLAC),supported
also improve the computational efficiency up to 30%. Thgy DOE SciDAC program, have successfully taken advan-
application of moving curved mesh adaptation to an acceige of higher order finite elements to perform electromag-
erator cavity coupler shows a tenfold reduction in executigietic simulations for the design of the next generation lin-
time and memory usage without loss in accuracy compariegr accelerators, for example, short-range wakefield calcula-
to uniformly refined meshes. tions [5-7]. Those simulations requires sufficient refinement
around the beam to resolve high frequency while the rest of
the domain can have a large mesh size. This refinement re-
gion must move along with the beam through the curved do-
mains in the time dependent simulations to achieve accept-
able computational efficiency. Considering that the domains
1 Introduction are curved and higher order finite elements are used, the re-
fined meshes must also be curved to provide a sufficiently
Higher order finite elements [1], which are well known fohigher order geometric approximation to effectively achieve
faster rates of convergence in terms of computational &fie desired level of accuracy. The uniform refinement us-

ficiency, can provide an effective approach for large-scdfeg smaller mesh size throughout the entire domain can pro-
duce over-refined meshes outside of the critical beam do-
X.-J. Luo- M. S. Shephard mains while larger mesh size can generate too coarse meshes
Scientific Computation Research Center which often become invalid during the curving procedure.
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shephard@scorec.rpi.edu in a ILC coupler short-range wakefield simulation whose
. - beam pipe radius is 3m The mesh will have over 100
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Fig. 2 Bézier control points for a curved mesh edge, face and region

Fig. 1 Beam region in a ILC coupler short-range wakefield simulation 1 NOS€ properties are useful to form the validity check al-
gorithm for Bézier higher order curved elements and to de-

termine local mesh modification operations to correct invalid

To enable such higher order finite elements in large-scallements due to the curving of mesh entities to the model
simulations, a moving curved mesh adaptation procedureundaries. The resulting curved meshes can always guar-
that combines a generakBier mesh curving [8,9] and sizeantee that each element has positive determinant of Jacobian
driven mesh adaptation [10, 11] is presented. The applicatiorits closures.
of curved mesh modification operations and properly size
control are essential to ensure the resulting curved meshes
are valid with least number of elements for the desired acéld Topology-based &ier Higher Order Shape
racy. Representation

The outline of this paper is as follows. Section 2 de-
scribes a Bzier mesh curving procedure to construct valiBernstein polynomials provide an effective means to define
curvilinear meshes for three-dimensional curved domairB€zier hierarchic higher order shapes for topological mesh
The procedure employséier polynomial to represent theentities in their parametric coordinates.géh order Bezier
higher order geometric shapes for curved mesh entities. Thesh entity can be represented as [9],
extension of size driven mesh adaptation procedure to ac-

count for curved elements is discussed in Section 3. Anakf&) = By (&)by & 1)
sis results applied by SLAC for linear accelerator design are [i=q

shown in Section 4. Conclusions and future works are given il _ _ _ _
Section 5. WhereBm& are the Bernstein polynomials defined in the

mesh entity parametric coordinate system as shown in Ta-
ble 1. Note that the independent parametric coordinates for

2 Mesh Curving

A flexible distributed mesh data structure [12] is employeﬁ‘ble 1 6. fil. By and&or topology mesh entity

in this paper to support the moving curved mesh adaptatipn. £ lil By el
The mesh data structure applies a general topology and cfasqge (&1,5) =it ks ErE]
sification of the entities with respect to the geometric modelrriangle (1,2, &3) il =i+j+k - ciglek
entity that the mesh entity is on [13)1 andG{ are used | . 7 et |
to describe the mesh and model topological entity of dimep= ot o cron (Eu.C2:638a) | NIl =i+i+kt! | mam | G16265%e

siond, d =0, 1,2, 3 represent mesh and model vertex, edge,
face, and region respectively.

The mesh approximation of the curved geometric dos
mains is maintained by assigning appropriaézigr higher
order geometric shapes to mesh edges and faces on cu
domain boundaries. The topology-basdszi®r mesh geom-
etry shape is constructed using Bernstein polynomials Whijg,aﬂ

r

topological mesh edge, face and tetrahedron shoudd,be

1,&2) and (&1, &, E3) respectively. Thereforéy = 1— &,

%l 1- (S]_ - &2 anc!§4 =1- él_ 52— 53. b\'\ are th_e control
points used to define the curved shapes of thei®& mesh

ges, faces and regions. Figure 2 shows the control points

.a quadratic curved mesh edge, triangle face and tetrahe-

il region.

— The Convex Hull Property - A Bzier curve, surface, or  Given a straight-sided mesh and its associated geome-
volume is contained in the convex hull formed by its cortry CAD model, the control points for those mesh entities
trol points. on the curved model edges/faces are determined based on

— Computationally efficient algorithms for degree eleveBézier curve and surface interpolation method by evaluat-
tion and subdivision are available which can be usedittg the model geometry at a set of discrete parametric lo-
refine the shape’s convex hull as well as adaptively refications. Common approaches often use the uniformly dis-
the mesh’s shape. tributed parametric points. However, alternative methods, such

possess a number of advantageous properties including [
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as chord length method or curvature-based procedure, wiltler 3q— 1),

be used to improve the geometric approximation [14]. For a _

curved mesh with different shape representation method, #f(J) = ¥ Cjici&" (5)
control points are computed by converting the given shapes li]=r

to Bézeir form. For example, a Lagrange quadratic me§vrherer _

edge with three interpolating control poinis |, andlsz can . | .
. . 2 coefficientsB;; andby; in Eq. 1. As an example, the quadratic
be converted to a&zier shape defined as=bz0%{ +201181(1 foyrapedral region shown in Figure 2 can be expressed as,

1) +bo2(1— 51)2. The Bezier control points can be com-

puted as follows, 5 5 5
X = B2ood200051 + Bo20d9020055 + Boo2dboo2055 + (6)

3(q—1). Cjj andcj; can be expressed using the

i(? - 2) 5 - 2202 byt | bop :l @ BoooAoo02E + B11odd1100f1£2 + Broaddrorofa € +
Xgé _ 1)/ ) _ t;0+ 2t _ é B1001P10018184 + Bo11ddo1105283 +
Bo101001015284 + Boo11000118384
Thereforegz = 11, b =13 andb1y = (42 — (11 +13)) /2. Considering thas = 1 — & — & — &, Baooo— Bozoo—
Boo20 = Boooz = 1 and the rest coefficien®'s equal to 2,
o ) ) therefore,
2.2 Validity Check of Ezier Higher Order Curved
Elements ax
. N » =z = 2{(b2000— b1001) &1 + (P1100— Po101) &2 (7)
When applying adaptive higher order finite element methatb1 N N
1 1

in which the approximation basis is often increased, the in-
tegration rules must be properly improved to ensure that  + (P1010— bo111) &3 + (P1001— boooz) &4}
the numerical integration error does not become the domi- o a0
nant error. The improvement of the integration rules require s
evaluating the determinant of Jacobian at new integrati = 2{(b1100— b1001) &1 + (Bo200— bo101) &2
locations. Without knowledge that the determinant of Jacés2
bian is positive throughout the element closure a-priori, the
curved elements must compute the determinant of Jacobian ~ + (bo110— Poo11) &3+ (Po101— booo2) €4}
at those new locations. In the case that negative determinant
of Jacobian occur, the curved elements become invalid and
must be corrected. To avoid the need to constantly rech - 2{(b1000— b1001) &1 + (Bo110— bo101) &2
the validity of a curved element, a general validity check afés
gorithm independent of the basis functions, the polynomial
orders, or the applied integration rules is desired. This pa-  + (bo110— Poo20) &3+ (Poo11— booo2) €4}
per used the convex hull property okBier polynomials to
check the validity of curved elements which ensure the de-
terminant of Jacobian is always positive in the element clo- The determinant of Jacobian is a cubic Bernstein poly-
sures [8]. nomial and the coefficientS;; andc;; are listed in Table 2.
Given aqth order Bezier tetrahedron described in Eq.1%bi, ¢ andd; are the vectors defined by the corresponding
the Jacobian matrix of the geometric mapping with respe&@ntrol points shown in Eq. 6.
to the independent parametric coordinai@s &,, &3) is,

a b2

C2 d2

ag b3

c3 d3

Ixg Ixg Ixg Table 2 C;;; andcy; for det(J) of a quadratic tetrahedral region
d&1 9& 9&3
g [9X] _ | 0% ok ok 3 T TCi Ci
& dc1 d& d&3 3000 8 (g xa)-as
% % % 0300 | 8 (b1 x bp) -bg
&1 98 d&3 0030 | 8 (c1x¢2)-C3
. 0003 | 8 dy xdy)-d
wherex = (x1,X%2,X3) Therefore, the determinant of the Ja- 2100 | 8 | (a x(biiai)x bi)-as
cobianJ is, 1200 | 8 | (agxhbp+apxby)-bs
ax  odx ax
det(J) = ( ) (4)

The convex hull property of &ier polynomial indicated

—_ >< —_—) e ([ ———

961 9&" d&

where% are the three partial derivatives nfwhich are that the polynomial is bounded by its minimal and maximal
g econtrol points [14]. So,

(g—21)th order Bezier functions. Therefore, the resulting de-
terminant of Jacobian is aé&ier polynomial function with min(cj;)) < det(J) < maxcy) 8)
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tions are essential to ensure the reliability of the mesh curv-
ing procedure to create valid curved elements.

The procedure processes one curved mesh entity at a
time as follows [8]:

— Determine the key mesh entities to apply local mesh op-
erations based on the negative coefficiegfs,< 0, in
computing the determinant of Jacobian.

— Determine if the invalidity is caused by pairs of neigh-
boring mesh faces or edges classified on the boundary
such that angles of 18@re created. In those caseg,<
0 only happens at j,k,| =r. Apply either split (see Fig-

Fig. 3 The computation of det(J) indicates that the mesh entiies Ure 4(a)) or swap operations (see Figure 4(b)) to intro-

M3, M3, M andM} are key mesh entities duce additional entities to subdivide those larger angles

and correct the invalid curved element.
— Determine if the invalidity is caused by pairs of opposite
Therefore, a curved tetrahedral region is valid in its clo- mesh edges coming too close to each other in one curved
sure as long as itsin(c;;) > 0. region, wherec;; < 0 happens at j, k| # r. Apply ei-
ther region split (see Figure 4(d)) or split+collapse (see
Figure 4(e)) to remove the invalid curved element.
2.3 Effective Procedure to Generate Valid Curvilinear — If neither of above two steps is successful, examine the
Meshes applications of the remaining operations (see Figure 4(c),
4(f)) to correct the invalid curved elements.

The mesh curving procedure can start with a straight-sided If the invalid curved element can not be corrected using

mesh and an existing curved mesh with invalid elements. In those local mesh operations, refinement is applied and

the case that a straight-sided mesh is given, the procedureall new invalid curved mesh entities will be added to the
computes the Bzier control points for the mesh edges/faces list to be processed. Subdivision creates more options for
on curved domain boundaries and curves them incremen- applying operations later.

tally. For a given curved mesh with different representation Figure 5 shows the straight-sided and curved mesh for a

higher order shapes, for e>,<ample, Lagrange i_nterpolati%rb curved model to demonstrate the effectiveness of the de-
the shapes are converted tézer form and the invalid el-

. eloped procedure. The mesh has 139 regions and 31 curved
ements are detected and corrected incrementally. Centqu pedp g

. . N ions are invalid. 20 local mesh modifications are applied
both of the approaches is the selection of effective local m érg PP

dificati i 1o eliminate the invalid el s 1 correct those invalid elements. Curved meshes for more
modinication opérations to eliminate the invaliid elements i omplex domains used by SLAC for electromagnetic linear
the resulting curvilinear meshes are valid.

. ; . accelerator analysis are shown in section 4.
The computation of the determinant of Jacobian to de- y

tect invalid elements can provide useful information to de-
termine key mesh entities and appropriate operations to c:gr-

rect the invalidity. The invalid elements are defined as tho eMn?;/ilng Curved Mesh Adaptation in 3D Curved
curved elements having at least one negative coefficie 3

Cjij <0, as shown in Eq. 5. The key mesh entities are de: : . .
fined as those whose control points appear in the Comd‘?J]e developed size driven mesh adaptation procedure [10]

tation of the neaative coefficients,. As an examole. Eig- 18S been successfully applied in cardiovascular blood flow
9 § p'e, Mg ignulations [15], metal forming process [16], wave propa-

ure 3 shows an invalid quadratic tetrahedral region and R ; ;
computation of the determinant Jacobian shows that coeffilon Simulations [17], etc. where the results demonstrated
cientcgoppo< 0. Based on Eq.8 and Table 2, the control poin b§tant|al_ compqtaﬂonql efficiency can be |mproveq using
b2006 D110, 1010 and byooz have been used to compute th e isotropic or anisotropic adapted meshes to effectively re-
0, *-1100, 101 0 xal npl 1 Solve solution fields. The procedure has been extended to
Cao00 Which indicates thalg, My, My andMj are key mesh al with curved meshes for higher order finite elements
entities and applying local mesh modifications on any |gnFIarge—scale simulations. The %xtended procedure main-
them can effectively makeooo positive and the curved ele-y ., existing functionalities developed for straight-sided

mer_}th\(/ealéi.t of curved local mesh modifications applied {geshes such as vertex-based size field specifications and se-
pp tive local mesh modification applications [10]. In addi-

create valid curvilinear meshes include edge split, edge s g ; .
edge collapse, region collapse, double split+collapse, \%ﬁi{ t:::;en]:g!%\hi/;ngup\l/vg dsteps have been added in the case

edge re-shape as shown in Figure 4 [9]. Comparing to the
straight-sided mesh, the validity check algorithm discussed The validity check algorithm described in Section 2.2
in Section 2.2 is used to determine whether a curved local must be applied when the affecting cavities for a local
mesh modification operation can be applied. Those opera- mesh modification operation have curved mesh entities.
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M edge to be split

P

M new vertex

R L
S

(a) Edge split

M edge to be swap

(b) Edge swap

M: edgetobecollapsed M region to be collapsed

M: M; two remaining regions

S %‘

(c) Edge collapse (d) Region collapse

M M; two edges M, edge to be reshaped

Ms new curved shape

(e) Split+ collapse (f) Edge reshape

Fig. 4 3D curved local mesh modification operations

Fig. 5 Straight-sided mesh (left) and curved mesh (right) for a 3D
curved domain

Fig. 6 Before (left) and after (right) refine a quadratic curved mesh
edgeM3 on model edgeS). New mesh edgekl}, M3 have been ap-
propriately curved to the model boundaries

This step ensures that resulting curved meshes are valid
after applying the selected local mesh operation.

— Any newly created mesh entities on the curved domain
boundaries must be properly curved to the model bound-
aries which ensures that the geometric approximation
of the resulting adapted meshes is maintained. As an
example, Figure 6 shows how the procedure to split a
quadratic curved mesh ed@4} which is classified on
the curved model edg®}. The two newly created mesh

edgesM] andM} are also curved to the model ed@g.

In size driven mesh adaptation procedure, a mesh metric
field, which can be either isotropic or anisotropic, is defined
to specify the desired size of elements. The metric field is
used to compute the edge length and directions of the cur-
rent mesh with respect to this metric. A series of controlled
mesh modification steps are applied to obtain a new mesh
that satisfies the specified mesh metric field which consist of
the following three steps [11]:

— Coarsening stage to eliminate the mesh edges that are
shorter than the desired edge length in the metric field.
This stage is accomplished by applying collapse opera-
tion on the identified shorter edges one at a time.

— Refinement stage to reduce the maximal mesh edge length
to reach the desired edge length in the metric field. Edge-
based refinement templates and application of local mesh
modification to project the new created mesh vertices
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to the curved boundaries are iteratively applied until thehereL (M) represents the length of the mesh eNtfewith

adapted mesh satisfies the mesh size metric field requitespect to the mesh size field as defined as,

ments [10].

— Shape improvement stage to improve the quality of the, 1 iy [r1
; ; lity of thept) _ |m; |\/ = _dt

resulting mesh using swap and/or vertex reposition ope o H(t)

ations.

For large-scale adaptive simulations, discretization errahere||M!|| denotes the length of the mesh edge &tit)
estimation is applied to construct size fields to control th& & monotonic interpolation function along the mesh edge
mesh adaptation [15-17] in which the adapted meshes &a¢h thaH (0) = h;, andH (1) = hj,. For the piecewise lin-
conform to the size requirements. However, there are c@ar mesh size field used in this paper to track the moving
tain situations where other factors may also be applied fgsh adaptation in curved domains, the functit) is,
set the size field. For example, the size information bein
given for the short-range wakefield simulations performéd(t) = hj; + (hj, —hj,)t (11)
by SLAC is supplemented to have a refined mesh in areas )
where beams currently reside. The specification of this referefore, Eq.10 gives,
finement information is dictated by the initial locations of log(h;, /hi.)
the beam and the desired mesh size around the beam wm_igbqll) - HMilHMvhjl #h, (12)
is often at least one order of magnitude smaller than the rest hj, —hj,

of the domains. The larger size difference between the finer L P
beam domain and the coarse domain can lead to bad qJglérefore, for any mesh edge which is not satisfied in Eq.9,

ity resulting meshes. The left mesh in Figure 7 shows ¢ 1arger mesh size of 'tls bounding mesh vertices is de-
adapted curved mesh which uses size 1 and 10 to congtased tanin(h;,, hj,)B-M?) to meet Eq.9. The process is
the fine and coarse mesh in the model. The abrupt size figgratively performed over the mesh when all of the mesh
change causes meshes at the fine and coarse mesh inteffdges satisfy Eq.9. For the mesh shown in Figure 7b),
not acceptable which clearly demonstrated that the conti®adopted as.B. More moving adaptive curved meshes are
of the mesh gradation is needed. shown in section 4.

(10)

4 Analysis Results

4.1 Finite-Element Time-Domain Method for
Electromagnetics

A brief introduction of finite-element time-domain (FETD)
method for electromagnetic simulation is given in this sec-
tion. Ampere’s and Faraday’s laws along with constitutive
relations yield the inhomogeneous vector wave equation for
the electric field,

1 92 d

Fig. 7 Curved meshes without (left) and with (right) mesh size gradd0 avoid time differentiation of electric current densityit
tion control can be integrated in time to obtain the following equation,

2
The procedure described in [18] is adopted to control@y (1D > /t Edr) +8i/t Edr=—J (14)
smooth mesh size transition over the mesh. Central to the \ X4 —oo ot2 ) e

algorithm is that the ratio between the larger mesh size to , o oo .
the smaller mesh size at the two bounding mesh vertices/df€reE is the electric field intensity] is the electric cur-
any mesh edge is under a prescribed faftowheref > 1. rent der_13|ty, ang e_mdu are the electric permittivity and
LetM? be amesh edg#|® andM?, areits two bounding Magnetic permeability. - _

mesh vertices, the given mesh sizes at each vertekjare With finite-element spaC|aI.d|scret_|zat|QfLm EdrinEq.
and hj, which represent the desired edge lengths at th 4 is expanded by a set of hierarchical Nedelec [19] basis
two vertices. We require that, unctionsNi(x),

A t
max{%, %}uMb <p ) / E(x,7)dr =Y a(t)-Ni(x) (15)

iz M -
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The vector wave equation is discretized to a set of second-
order ordinary differential algebraic equations,

i

d%e
M—-— +Ke=f 16 o
where matriceM, K, and vectoff are,

Mij = / eN;i-N;dQ a7
JQ
1
Kij:/—(DxNi)-(DxNj)dQ (18)
Qu
f, — / N; - JdQ (19)
JQ

The Newmark-beta scheme, which is unconditionally sta:
ble when beta is larger than or equal to 0.25, is used to ap-
proximate the above second-order differential equations of

fielc_i Eg. (16). The resulting implicit time marching schemegjg. 8 The mesh for one cavity (top), close-up mesh before (bottom
is given as follows, left) and after (bottom right) correcting the invalid curved elements

rked as yellow

(M +B(AUPK) €L = (2M — (1— 2B)(A1)K) & marked as yello

_ (M +ﬁ(At)2K) en—1_ (At)Z (ﬁfn+1+ (1_ zﬁ)fn+ﬁfn_l)
(20)

Note that the electric fiel& and the magnetic flux den-
sity B are then easily obtained from the solution ve&or

E(xX) =3jaeNi(x) (21)
B(x) = —¥ial xNi(x) (22)

. - . Fig. 9 Local mesh cavity before (left) and after (right) applying edge
4.2 Valid Curvilinear Meshes for FETD Electromagnetic S\,gap to correct the invaﬁd e|eme$1t ) (ight) applying edg

Simulations

SLAC performs simulations for the wakefield effects of a gt
8-cavity cryomodule for the proposed International Linei IHC cryomedule of 8 Supercanducting RF cavities
Collider (ILC) using the FETD method, which applies a s¢
of higher order hierarchical Nedelec basis functions [1!
for the finite element spacial discretization that requires t|
meshes to be curved. A curvilinear mesh wit®74 mil-
lion quadratic isoparametric tetrahedral elements is usec
this FETD simulation. The initial curvilinear mesh uses Le
grange interpolation to represent the higher order shapes
those curved mesh edges which have been convertezizieiB
representations using Eq.2. 515 invalid curved elements weic
detected and have been corrected using the procedure Eiig-10 A snapshot of the electric field distribution excited by a beam
cussed in Section 2. The valid curved mesh was exportedi@g” 8-cavity cryomodule for the proposed International Linear Col-
converting the Bzier shapes back to Lagrange shapes to

suitable for the analysis simulation system. Figure 8 shows

the curved mesh for one cavity of the model and the close-up ) )
mesh before and after curving. Figure 9 shows how an ed¥@s generated. Figure 10 shows a snapshot of the electric

collapse operation is applied to correct an invalid curved dield distribution excited by a beam in the ILC cryomodule.
ement during curving process. The statistics for correcting the invalid curved regions
The mesh produced about 20 million degrees of frees presented in Table 3. The data shows that the procedure
dom. The simulation used 256 Multi-stream processors aesed about 10 minutes to correct the invalid regions on a sin-
the Cray-X1E at Oak Ridge National Laboratory. It took gle processor Linux workstation. The corrected curvilinear
total runtime of 300 wall-hours through multiple jobs withmesh not only leads to a stable time-domain simulation but
checkpointing for a complete run and half terabtye of da#so reduces the execution time per time-step by up to 30%

Fields in beam frame moving at speed of light
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Table 3 Statistics for correcting the 2.97M mesh with 515 invalid
curved regions

Time usage (sec)
Import the mesh 381.162
Create invalid region list 45.106
Correcting invalid regions| 256.182
Export the mesh 64.911
Local mesh operations
Edge collapse 253
Region collapse 17
Edge swap 76
Double edge split+collapse 13
Recurving 32

due to better conditioned matrices, which is 90 wall-hours
runtime efficiency improvement on the parallel computers.

Fig. 11 Geometric model for the short-range wakefield simulation

4.3 Moving Curved Mesh Refinements for Short-range
Wakefield Calculations
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